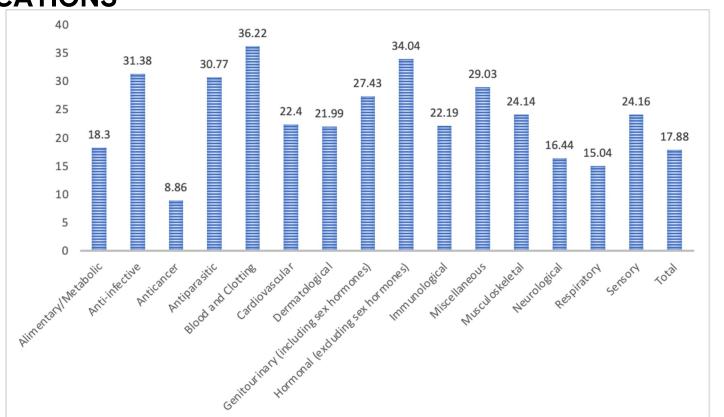


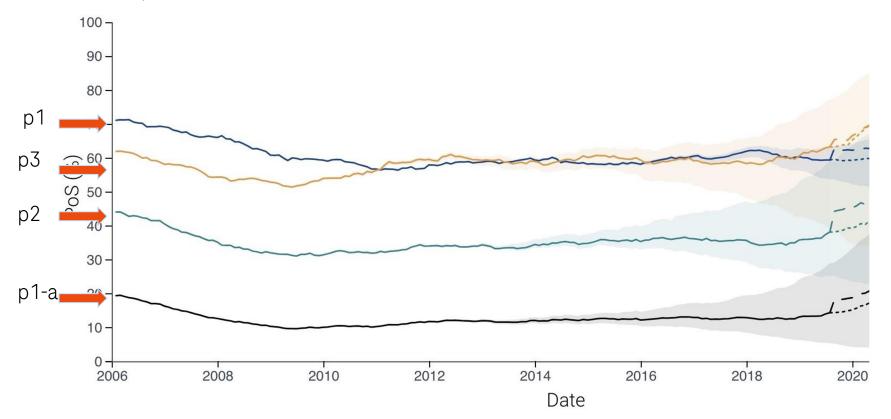
CRAFTSMANSHIP IN PHARMACEUTICAL PORTFOLIO MANAGEMENT

A quantitative approach to making better decisions for Pharma Companies and society

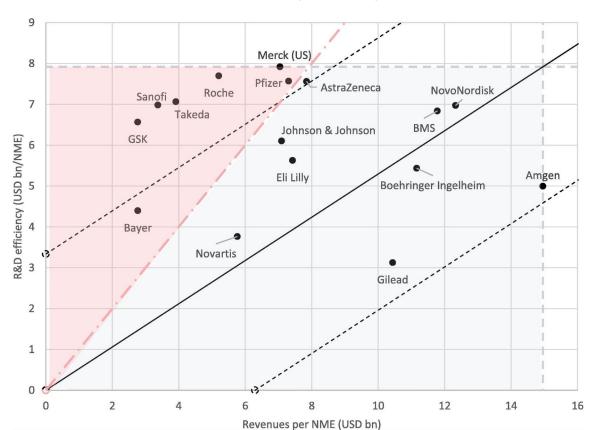

HENRY J. CONTER, BESC, MD, MSF, MSC, FRCPC PORTFOLIO MANAGER & MEDICAL DIRECTOR, PHARMA RESEARCH AND EARLY DEVELOPMENT HOFFMAN-LA ROCHE, BASEL SWITZERLAND

APRIL 17, 2024 | FOR SDP ANNUAL MEETING

PROBABILITY OF SUCCESS VARIES ACROSS

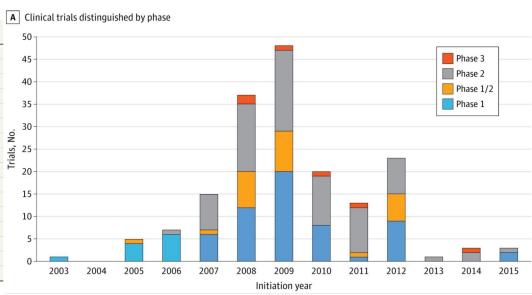

PARTY TO SUCCESSFULLY TRANSLATE SCIENTIFIC KNOWLEDGE INTO NEW PHARMACEUTICALS

CLINICAL TRIAL SUCCESS RATES ARE FLAT


POS RATES, 3 YEAR ROLLING WINDOW ACROSS ALL DISEASE AREAS 2006-2020

NEGATIVE PHARMA R&D PRODUCTIVITY IS COMMON

AVERAGE R&D EXPENDITURE = \$6.16B FROM 2001-2020 (CAGR=6%)



IGF1-R inhibitors as a case study in pharma concentration

\$1.6B USD lost for 16 drugs, 183 trials, >12,000 patients

Drug name	IGF-1R inhibitor type	Company	Estimated No. of patients	
AMG479 (ganitumab)	Antibody	Amgen/NantCell	2864	
AVE1642	Antibody	Sanofi-Aventis	57	
AXL1717	Small molecule	Axelar AB	204	
BIIB022	Antibody	Biogen Idec	98	
BMS-754807	Small molecule	Bristol-Myers Squibb	296	
CP-751871 (figitumumab)	Antibody	Pfizer	2029	
IGV-001	Antisense/cell therapy	Imvax	93	2
IMCA12 (cixutumumab)	Antibody	Eli Lilly and Company/NCI	2791	1
KW-2450	Small molecule	Kyowa Hakko Kirin Pharma Inc	83	ř
MK7454 (robatumumab)	Antibody	Merck & Co/Schering Plough	305	
MK0646 (dalotuzumab)	Antibody	Merck, Sharpe & Dohme Corp	1436	
MM141 (istiratumab)	Antibody	Merrimack Pharmaceuticals	135	
OSI906 (linsitinib)	Small molecule	Oncogene Sciences/Astellas Pharma Inc	1277	
PL225B	Small molecule	Piramal Enterprises Ltd	70	
RG1507 (teprotumumab)	Antibody	Hoffmann-La Roche	525 ^b	
XL228	Small molecule	Exelixis	133	

TWO WAYS TO FIX THIS PROBLEM:

BETTER MOLECULE DECISION-MAKING, BETTER PORTFOLIO DECISION-MAKING

MOLECULE DECISION-MAKING:

- 1. FUNDAMENTAL DISEASE KNOWLEDGE.
- 1. IMPROVED MOLECULE DESIGN.
- 1. STATISTICAL POST TRIAL ANALYSIS.
 - a. QUANTITATIVE

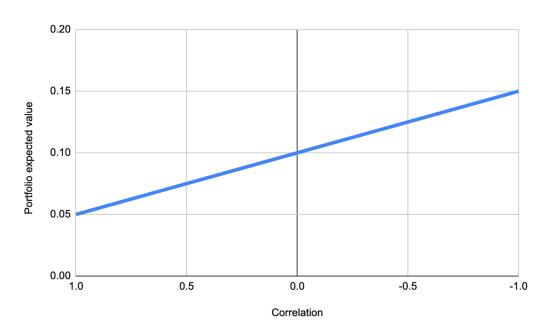
PORTFOLIO DECISION-MAKING:

- CUSTOM REFERENCE CLASS FORECASTING.
- 1. DIVERSIFICATION.
- 1. RISK TARGETING.

WHAT DOES DIVERSIFICATION DO?

DIVERSIFICATION AND PORTFOLIO VALUE

- Development program A, 95% fail
- Development program B, 95% fail
- 1. Value of portfolio AB if 100% correlated?


a.
$$=0.05 + 0.05 - 0.05 = 0.05$$

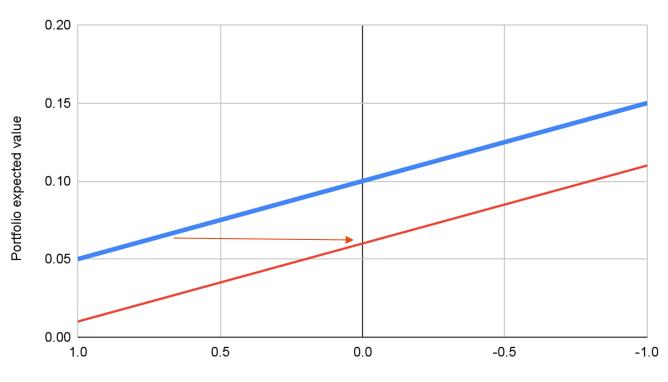
1. What if there is no correlation?

a.
$$=0.05+0.05-0=0.1$$

1. What if there is perfect -ve correlation?

a.
$$=0.05+0.05-(-0.05)=0.15$$

DIVERSIFICATION ENABLES RISK-TAKING


DIVERSIFICATION INCREASES PORTFOLIO VALUE

- Portfolio 1:
 - A=B=95% fail
- Portfolio 2:
 - A=95%
 - B=99% fail

Portfolio 1 @ 0.79 cor

=

Portfolio 2@0 cor

HOW CAN WE ESTIMATE RELATIONSHIP?

MOLECULE DIVERSITY VS. PORTFOLIO OUTCOMES

MOLECULE DIVERSITY: VECTOR CREATION

	Mechanism			Technology			Form	ulation	Toxicity		
	M1	M2	M3	Mab	Vaccine	Small Mol	IV	oral	T1	T2	T3
product 1	1	0	0	1	0	0	1	0	1	1	0
product 2	1	0	0	1	0	0	1	0	0	1	0
product 3	0	1	0	0	1	0	1	0	1	0	1
product 4	0	0	1	0	0	1	0	1	0	1	1
product 5	1	0	0	1	0	0	0	0	0	0	0

$$d(x,y) = x.y / ((|x|*|x|) + (|y|*|y|)- x.y)$$

PORTFOLIO OUTCOMES: SUCCESS AS RETURNS

- 1. SUCCESS RATES.
- 1. CORRELATION.
- 1. COVARIANCE.

MOLECULE ASSESSMENT IN DIVERSIFICATION

DDR

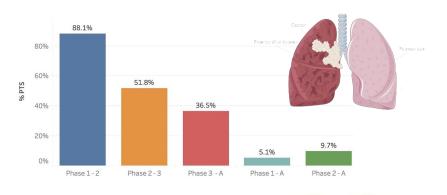
ACROSS CLASS COMPARISON VS IN-CLASS COMPARISON

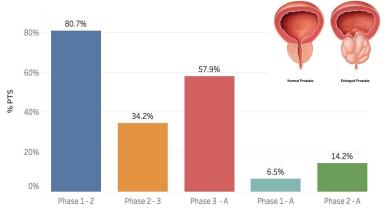
Cytotoxic

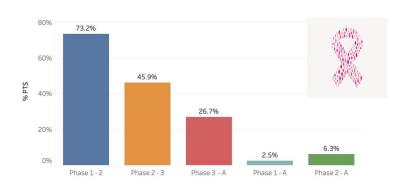
GT

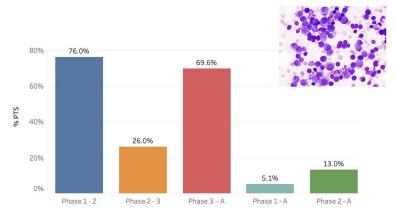
TKI

ADC

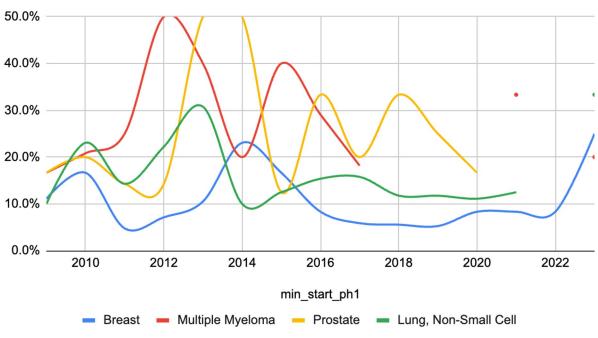

I KI	ADC	Cytotoxic	GI	אטע	CPI					
1	X	X	X	X	X					
0.15	1		X	X	X					
0.15	0.17	1		X	Х					
0.08	n 13	0.22	1		V					
0.00	0.13	0.22	'		^					
0.28	0.16	0.24	0.15	1	X					
0.16	0.18	0.19	0.29	0.14	1	veliparib	olaparib	atezolizumab	pembrolizumab	nivolumab
				veliparib		1.00	Х	X	Χ	X
				olaparib		0.67	1.00	X	Х	X
				atezolizuma	b	0.11	0.14	1.00	Х	Х
				pembrolizur	nab	0.11	0.19	0.67	1.00	Х
				nivolumab		0.10	0.17	0.80	0.87	1.00
	0.15 0.15 0.08 0.28	1 X 0.15 1 0.15 0.17 0.08 0.13 0.28 0.16	1 X X 0.15 1 0.15 0.17 1 0.08 0.13 0.22 0.28 0.16 0.24	1 X X X X 0.15 1 X 0.15 0.17 1 0.08 0.13 0.22 1 0.28 0.16 0.24 0.15	1 X X X X X X X 0.15 1 X X 0.15 0.17 1 X X 0.08 0.13 0.22 1 0.28 0.16 0.24 0.15 1 0.16 0.18 0.19 0.29 0.14 veliparib olaparib atezolizuma pembrolizur	1 X X X X X X X X X X X X X X X X X X X	1 X X X X X X X X X X X X X X X X X X X	1 X	1 X X X X X X X X X X X X X X X X X X X	1 X X X X X X X X X X X X X X X X X X X


CPL



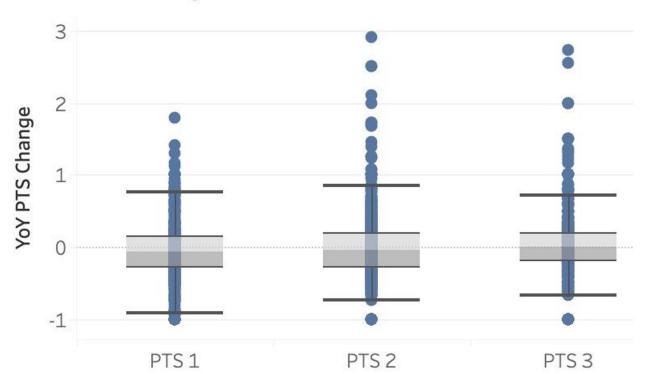

SUCCESS/FAILURE HINT AT ABILITY + KNOWLEDGE

DIFFERENT DISEASES ARE BETTER OR WORSE UNDERSTOOD



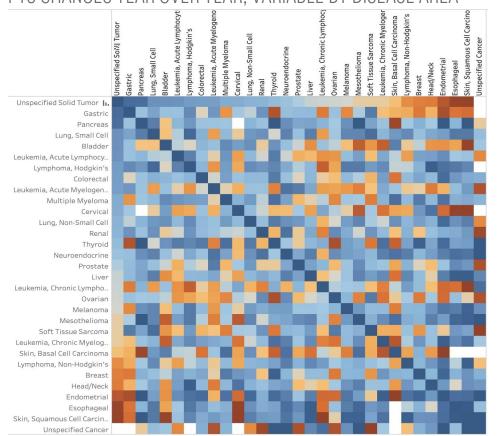
PROBABILITIES CHANGE FREQUENTLY

LEADS TO BOOM+BUST CYCLES



REALIZED PORTFOLIO OUTCOMES, REALIZED DIVERSITY

PTS CHANGES YEAR OVER YEAR


PTS Volatility

REALIZED PORTFOLIO OUTCOMES, REALIZED DIVERSITY

PTS CHANGES YEAR OVER YEAR, VARIABLE BY DISEASE AREA

Examples of rational portfolios

Portfolio 1:

Lung-CLL-Colon

Portfolio 2:

Breast-gastric-bladder

Portfolio 3:

Prostate-colorectal-renal

Portfolio 4:

Myeloma-prostate-ovarian

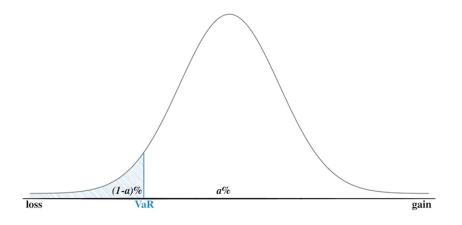
DIVERSIFICATION REDUCES VARIANCE OF OUTCOMES

THE WHOLE IS GREATER THAN THE SUM OF ITS PARTS!

- 1. LUNG:
 - a. PTS = 5%, STD = 47%
- 1. CLL:
 - a. PTS = 5%, STD = 36%
- 1. COLON:
 - a. PTS = 1%, STD = 46%
- 1. EQUAL WEIGHT L-C-C:
 - a. PTS = 4%, STD: 21%

Portfolio Variance Formula

Variance = $\frac{(w(1)^2 \times o(1)^2) + (w(2)^2 \times o(2)^2) + (2 \times (w(1) \times o(1) \times w(2) \times o(2) \times q(1,2))}{(2 \times (w(1) \times o(1) \times w(2) \times o(2) \times q(1,2)))}$



PORTFOLIO PATHS & VALUE @ RISK

WHAT ARE THE CHANCES OF A BAD OUTCOME?

What is Value At Risk?

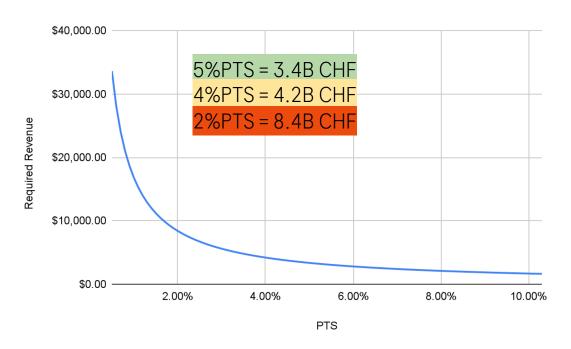
Chance of a pre-specified loss, over a specific time.

Why should I care?

We invest in compounds with specific objectives in mind

- 1. Chance of approval.
- 2. Revenue post approval.

A company under performing either of these, will fail in the long run.



DIVERSIFICATION REDUCES VALUE @ RISK

WHAT ARE THE CHANCES OF REALIZING A PTS OF 2% OR LESS?

LUNG: PTS = 5%, STD = 47% (NNT 20)

3x Diversified: PTS = 4%, STD = 21% (NNT 25)

Summary

- 1. Biopharma has a R&D productivity problem.
- 2. Quantification of diversity:
 - a. increases the amount of risk a company can take.
 - b. reduces boom-bust cycles.
 - c. reduces catastrophic outcomes.

